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1.1 — The problem etc. 2

We consider time-periodic solutions for the
nonlinear wave equation (; = 1) and the nonlinear beam equation (u = 2)

d2u(t,z) + (~1)Pdu(t,z) = f(u(t,z)),  (t,x) € R x (0,7),

with Dirichlet BCs. These PDEs are Hamiltonian with

H(u,v) = /ﬂ[%((’)gu)z +1v? - F(u)| de, F' =7f.
0

From a period 27 one can get “related” periods via scaling. Changes f unless homogeneous.

Our motivation:
e Observed instabilities in a bridge model | Arioli, Gazzola 2000 .
e CAP for Hamiltonian and/or parabolic PDEs with potential small denominator issues.

Existing relayed work:

Variational methods for period 27 and related:
1 =1 [ Rabinowitz 1978; Rabinowitz 1981; ... |
p =2 [ Lee 2000; Liu 2002; Liu 2004; ... |

Perturbative methods for small u and positive-measure sets of periods near “special” values:
p =1 [ Berti 2007; Gentile, Mastropietro, Procesi 2005; Gentile, Procesi 2009 |
p = 2 | Mastropietro, Procesi 2006; Gentile, Procesi 2009 |



1.2 — The problem etc.

We restrict to f(u) = ou?® with o = &1.

Setting u(t, z) = u(at, x), where %7’ is the desired period for u, we arrive at the equation

Lou=ou®,  Lo=0o%d} + (-1)"92",

where u = u(t, z) is 2m-periodic in t and satisfies Dirichlet boundary conditions at x = 0, 7.

i =1: Nonlinear wave equation «o?07u — d2u = ou’

i =2: Nonlinear beam equation «?d7u + diu = ou?®

Consider the vector space A° of all real analytic functions

u = Z Un ke Pk s P, ;(t,x) = cos(nt) sin(kx) .
n,k

We restrict our analysis to the subspace B consisting of all u € A° with the property that
Un, 7 0 only if n and k are both odd.
Notice that

LoPok =M kPnk, Ak = k2H — (om)2 = (k" 4+ an)(k* — an) .

We only consider « values for which A, # 0 for all odd n and &.
This includes the set Q, of rationals o = p/q with p and ¢ of opposite parity.
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Definition. A solution u € B of the equation Lou = ou® will be called a type (1,1) solution
if |un k| < |ui1| whenever n > 1 or k > 1.

First consider the nonlinear wave equation for some rational values of a. Our sample set:

(21 3 5 v 9 13 1 15 1 9 v 5 9 11 7 13 3 11 5 7 9 11 13 17

L8212 167207 2822728720 167 127 87 147 16° 10’ 18’ 4’ 147 6’ 8’ 10’ 12’ 147 18 J °

Theorem 1. For each o € ) the equation a?0?u — 0?u = u® has a solution u € B of type

(1, 1) with ]ul,l\ > \/2(1 — a).

Remark. Every solution u € B of the equation a?0?u — 0%u = u® with a € Q, yields a solution
@ € B of the equation a?0?4 — 0%t = —u?, and vice-versa. The functions u and @ are related
via u(t,2) = o tu(z — 7/2,t — 7/2).

Next we consider irrational values of .

Unfortunately we have to switch to the nonlinear beam equation.
Still difficult to construct non-small solutions for specific «.

Best known: a = 1/4/c where c¢ is an integer that is not the square of an integer.
By Siegel’s theorem on integral points on algebraic curves of genus one,

c)\n,k:ckél—nz%oo as nVk—oo.

Unfortunately we have no useful bounds ...
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So we make an assumption:

Theorem 2. Let o = 1/+/3. Assume that |3k* —n?| > 39 for all k > 9 and all n € N. Then
the equation o?07u + Oau = u® has a solution u € B of type (1,1) with |uqy 1| > 1.

We have verified the assumption min,, |3k* — n?| > 39 for 9 < k < 10'2.

Our third result concerns irrational values of « that are close to the rationals in

Q:{liillé&éZéQﬂﬂEﬂ@
2 4’ 107 207 27 127 82 4’ 67 6’ 4> 147 127 20° 8 18’ 34J "

Theorem 3. For each r € Qo there exists a set R C R of positive measure that includes r
as a Lebesque density point, such that for each o € R, the equation o?0?u + Ofu = ou’ with

o =sign(l — «) has a solution u € B of type (1,1) with |ui 1| > /2|1 — «af.

Remark. In all of the equations considered, other types of solutions can be obtained via scaling:
If u € A° satisfies the equation L,u = ou?, and if we define

u(t, ) = b'u(at,bx) , a=ab’/a, (%)
with b and @ nonzero integers, then @ belongs to A° and satisfies Lyt = o@°>.
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3

In our proofs we solve L,u = ou® via the fixed point equation

u = Fqo(u) =

L 'ou®, o =sign(l — a).

For numerical experiments we use Fourier polynomials

u = Z Un ke Pk P, ;(t,x) = cos(nt) sin(kx) .

n<N
k<K

and truncate u3 to wavenumbers n < N and k < K.
As N — oo the equation becomes Hamiltonian, even if K < oc.

Definition for the K < oo equation. The union of all smooth branches that include a solution
of type (1,1) will be referred to as the (1,1) branch . Scaling each solution on the (1,1) branch
via (%) yields what we will call the (a,b) branch .

In the following graphs we show the norm
lullo = una
n,k

of the numerical solution v as a function of «.

Colors encode the index of u: the number of eigenvalues larger than 1 of DF, (u).




3.2 — Numerical results

The (1,1) branch for the nonlinear wave equation ouy — Uz, = u®

truncated at N = K = 3,5,7,9,19, 39.
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3.3 — Numerical results

The (1,1) branch for the truncated nonlinear wave equation oluy — Uype = us
and some other (a,b) branches (thin lines).
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3.4 — Numerical results

The nonlinear wave equation, truncated at N > K = 7.
The (1, 1) branch undergoes a fold bifurcation at o ~ 0.571
and a pitchfork bifurcation involving the (5,3) branch at a =~ 0.585.
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The nonlinear beam equation a?us + Ugper = tud truncated at K = 63 and N = 127.
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The proofs of Theorems 1,2,3 use the contraction mapping theorem.

Given p = (p1, p2) with p; > 0 denote by A9 the closure of ... with respect to the norm

lullp =) lunklotes,  oj=1+p;.
n,k

Let B, = BN .A7. Consider a quasi-Newton map associated with F,

Na(h) = FQ(UO —|— Ah) — U —|— (I — A)h,

where ug is an approximate fixed point and A an approximate inverse of I — DF, (ug).
Denote by Bs the open ball of radius 0 in 5,, centered at the origin.

Theorem 3 is proved by verifying the following bounds.

Lemma 4 For each r € Q2 there exists a set R C R of positive measure that includes r as
a Lebesgue density point, a pair p of positive real numbers, a Fourier polynomial uy € B,, a
linear isomorphism A : B, — B,, and positive constants K, 0, € satisfying € + Ko < 0, such
that for every a € R the map N, defined as above is analytic on Bs and satisfies

INa(O)lp <&, [IDNa()], <K, heBs.
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-1,
Compactness of L " : B, — B,,.

Define |[s]| = dist(s,Z). A simple estimate on the eigenvalues of L, is

B An il = (BE" +n)|BK" —n| > (2(8K" Vv n) — [BE*|)[BE")],  B=a ".

If o = p/q with p odd and ¢ even: |[8k*]| > 1/p for k odd; so in this case L' is compact.

For ;4 = 2 and irrational a we can use the following.
Let (11,19, 13,...) be a summable sequence of nonnegative real numbers.

Proposition 5. Let m > 1. Consider an interval J,, of length m=2 < |J,,| < 1. Then
{BE€Jp: [BE]|>¢y forall k>m}

has measure at least (1 — 4V, )| |, where Wy, =3 g

Applying this with [.J,,| = 1 and v, = k~3/2 yields the

Corollary 6. For almost every o € R the operator L, = o?0? + 0% has a compact inverse.
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Subspaces for error terms: u € B, , . iff u € B, and w, ; = 0 whenever n < v or k < k.

Our enclosures for u € B, consist of interval enclosures
for each ¢, ; and for the norm of each E, , in a representation

u = Z Cn,kPn,k: + Z El/,m ) El/,lﬁ‘, S Bp,u,m .

n<N v<2N
k<K K<2K

Estimating the map u — u® on B, is “standard”.
The operator norm of L' : B, , . — B, ... is bounded by 32/¢(v, k) where

¢(v, k) = inf B%| A\, | = inf (BK" + n)|Bk" —n|, B=a'.

kgn kgm

Here v, k,n, k are odd positive integers. To prove Lemma 4 we use

Lemma 7. Let r = p/q with p odd and q even. Given odd positive integers k and v, there
erists a set R C R of positive measure that includes r as a Lebesque density point, such that

for all a € R,

7

7 _
¢(V7K)Z4_p (5K2vy)_ﬁp ) 6:0{ 1'

Idea of the proof: In the above inf distinguish between £ > m and k < m.
For k > m use Proposition 5 with .J,,, centered at . And for k < m use that « is close to r.
Do this for increasingly large m.
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