Families of periodic solutions for some Hamiltonian PDEs (with G. Arioli)

- (1) The problem etc.
- (2) Main results
- (3) Numerical results
- (4) **Proofs**

We consider time-periodic solutions for the nonlinear wave equation ($\mu = 1$) and the nonlinear beam equation ($\mu = 2$)

$$\partial_t^2 \mathfrak{u}(t,x) + (-1)^\mu \partial_x^{2\mu} \mathfrak{u}(t,x) = f(\mathfrak{u}(t,x))\,, \qquad (t,x) \in \mathbb{R} imes (0,\pi)\,,$$

with Dirichlet BCs. These PDEs are **Hamiltonian** with

$$H(\mathfrak{u},\mathfrak{v})=\int_0^\pi \Bigl[rac{1}{2} (\partial_x^\mu\mathfrak{u})^2 + rac{1}{2}\mathfrak{v}^2 - F(\mathfrak{u}) \Bigr]\, dx\,, \qquad F'=f\,.$$

From a period 2π one can get "related" periods via scaling. Changes f unless homogeneous.

Our motivation:

- Observed instabilities in a bridge model [Arioli, Gazzola 2000].
- CAP for Hamiltonian and/or parabolic PDEs with potential small denominator issues.

Existing relayed work:

Variational methods for period 2π and related: $\mu = 1$ [Rabinowitz 1978; Rabinowitz 1981; ...] $\mu = 2$ [Lee 2000; Liu 2002; Liu 2004; ...]

Perturbative methods for small \mathfrak{u} and positive-measure sets of periods near "special" values: $\mu = 1$ [Berti 2007; Gentile, Mastropietro, Procesi 2005; Gentile, Procesi 2009] $\mu = 2$ [Mastropietro, Procesi 2006; Gentile, Procesi 2009] We restrict to $f(\mathfrak{u}) = \sigma \mathfrak{u}^3$ with $\sigma = \pm 1$. Setting $\mathfrak{u}(t, x) = u(\alpha t, x)$, where $\frac{2\pi}{\alpha}$ is the desired period for \mathfrak{u} , we arrive at the equation

$$L_lpha u = \sigma u^3\,, \qquad L_lpha = lpha^2 \partial_t^2 + (-1)^\mu \partial_x^{2\mu}\,,$$

where u = u(t, x) is 2π -periodic in t and satisfies Dirichlet boundary conditions at $x = 0, \pi$.

- $\mu = 1$: Nonlinear wave equation $\alpha^2 \partial_t^2 u \partial_x^2 u = \sigma u^3$.
- $\mu = 2$: Nonlinear beam equation $\alpha^2 \partial_t^2 u + \partial_x^4 u = \sigma u^3$.

Consider the vector space \mathcal{A}° of all <u>real analytic functions</u>

$$u=\sum_{n,k}u_{n,k}P_{n,k}\,,\qquad P_{n,k}(t,x)=\cos(nt)\sin(kx)\,.$$

We restrict our analysis to the subspace \mathcal{B} consisting of all $u \in \mathcal{A}^{\circ}$ with the property that $u_{n,k} \neq 0$ only if <u>n and k are both odd</u>. Notice that

$$L_{\alpha}P_{n,k} = \lambda_{n,k}P_{n,k}, \qquad \lambda_{n,k} = k^{2\mu} - (\alpha n)^2 = (k^{\mu} + \alpha n)(k^{\mu} - \alpha n).$$

We only consider α values for which $\lambda_{n,k} \neq 0$ for all odd n and k. This includes the set \mathbb{Q}_0 of rationals $\alpha = p/q$ with p and q of opposite parity. **Definition**. A solution $u \in \mathcal{B}$ of the equation $L_{\alpha}u = \sigma u^3$ will be called a type (1,1) solution if $|u_{n,k}| < |u_{1,1}|$ whenever n > 1 or k > 1.

First consider the **nonlinear wave equation** for some <u>rational</u> values of α . Our sample set:

 $Q_1 = \left\{ \frac{3}{8}, \frac{5}{12}, \frac{7}{16}, \frac{9}{20}, \frac{13}{28}, \frac{1}{2}, \frac{15}{28}, \frac{11}{20}, \frac{9}{16}, \frac{7}{12}, \frac{5}{8}, \frac{9}{14}, \frac{11}{16}, \frac{7}{10}, \frac{13}{18}, \frac{3}{4}, \frac{11}{14}, \frac{5}{6}, \frac{7}{8}, \frac{9}{10}, \frac{11}{12}, \frac{13}{14}, \frac{17}{18} \right\}.$

Theorem 1. For each $\alpha \in Q_1$ the equation $\alpha^2 \partial_t^2 u - \partial_x^2 u = u^3$ has a solution $u \in \mathcal{B}$ of type (1,1) with $|u_{1,1}| > \sqrt{2(1-\alpha)}$.

Remark. Every solution $u \in \mathcal{B}$ of the equation $\alpha^2 \partial_t^2 u - \partial_x^2 u = u^3$ with $\alpha \in \mathbb{Q}_0$ yields a solution $\tilde{u} \in \mathcal{B}$ of the equation $\alpha^2 \partial_t^2 \tilde{u} - \partial_x^2 \tilde{u} = -\tilde{u}^3$, and vice-versa. The functions u and \tilde{u} are related via $\tilde{u}(t, x) = \alpha^{-1} u(x - \pi/2, t - \pi/2)$.

Next we consider <u>irrational</u> values of α .

Unfortunately we have to switch to the **nonlinear beam equation**. Still difficult to construct non-small solutions for specific α .

Best known: $\alpha = 1/\sqrt{c}$ where c is an integer that is not the square of an integer. By Siegel's theorem on integral points on algebraic curves of genus one,

$$c\lambda_{n,k} = ck^4 - n^2 \to \infty$$
 as $n \lor k \to \infty$.

Unfortunately we have no useful bounds ...

So we make an assumption:

Theorem 2. Let $\alpha = 1/\sqrt{3}$. Assume that $|3k^4 - n^2| \ge 39$ for all $k \ge 9$ and all $n \in \mathbb{N}$. Then the equation $\alpha^2 \partial_t^2 u + \partial_x^4 u = u^3$ has a solution $u \in \mathcal{B}$ of type (1, 1) with $|u_{1,1}| > 1$. We have verified the assumption $\min_n |3k^4 - n^2| \ge 39$ for $9 \le k \le 10^{12}$.

Our third result concerns irrational values of α that are close to the rationals in

 $Q_2 = \left\{ \frac{1}{4}, \frac{3}{10}, \frac{9}{20}, \frac{1}{2}, \frac{7}{12}, \frac{5}{8}, \frac{3}{4}, \frac{5}{6}, \frac{7}{6}, \frac{5}{4}, \frac{19}{14}, \frac{17}{12}, \frac{31}{20}, \frac{13}{8}, \frac{31}{18}, \frac{61}{34} \right\}.$

Theorem 3. For each $r \in Q_2$ there exists a set $R \subset \mathbb{R}$ of positive measure that includes r as a Lebesgue density point, such that for each $\alpha \in R$, the equation $\alpha^2 \partial_t^2 u + \partial_x^4 u = \sigma u^3$ with $\sigma = \operatorname{sign}(1 - \alpha)$ has a solution $u \in \mathcal{B}$ of type (1, 1) with $|u_{1,1}| > \sqrt{2|1 - \alpha|}$.

Remark. In all of the equations considered, other types of solutions can be obtained via scaling: If $u \in \mathcal{A}^{o}$ satisfies the equation $L_{\alpha}u = \sigma u^{3}$, and if we define

$$ilde{u}(t,x) = b^{\mu}u(at,bx)\,, \qquad ilde{lpha} = lpha b^{\mu}/a\,, \qquad (\diamondsuit)$$

with b and a nonzero integers, then \tilde{u} belongs to \mathcal{A}° and satisfies $L_{\tilde{\alpha}}\tilde{u} = \sigma \tilde{u}^3$.

In our proofs we solve $L_{\alpha}u = \sigma u^3$ via the fixed point equation

$$u = \mathcal{F}_lpha(u) \stackrel{ ext{\tiny def}}{=} L_lpha^{-1} \sigma u^3 \,, \qquad \sigma = ext{sign}(1-lpha) \,.$$

For numerical experiments we use Fourier polynomials

$$u=\sum_{n\leq Ntop k< K}u_{n,k}P_{n,k}\,,\qquad P_{n,k}(t,x)=\cos(nt)\sin(kx)\,.$$

and **truncate** u^3 to wavenumbers $n \leq N$ and $k \leq K$. As $N \to \infty$ the equation becomes Hamiltonian, even if $K < \infty$.

Definition for the $K < \infty$ equation. The union of all smooth branches that include a solution of type (1,1) will be referred to as the (1,1) branch. Scaling each solution on the (1,1) branch via (\clubsuit) yields what we will call the (a,b) branch.

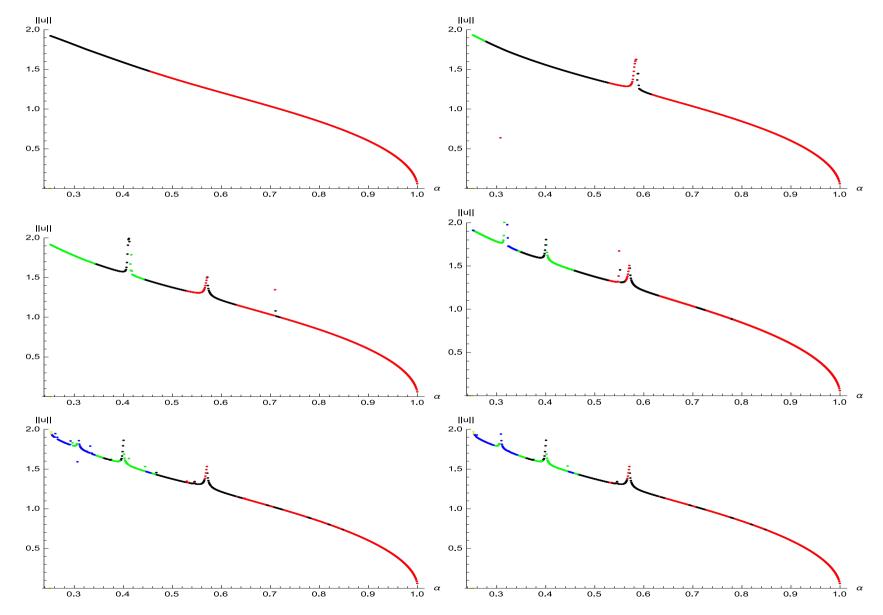
In the following graphs we show the norm

$$\|u\|_0=\sum_{n,k}|u_{n,k}|$$

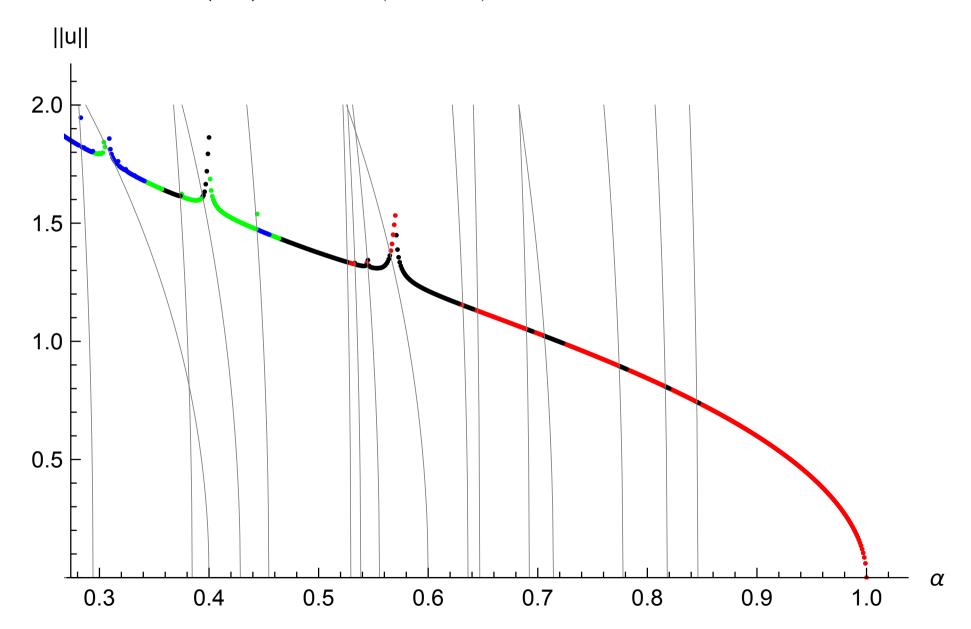
of the numerical solution u as a function of α .

C o l o r s encode the index of u: the number of eigenvalues larger than 1 of $D\mathcal{F}_{\alpha}(u)$.

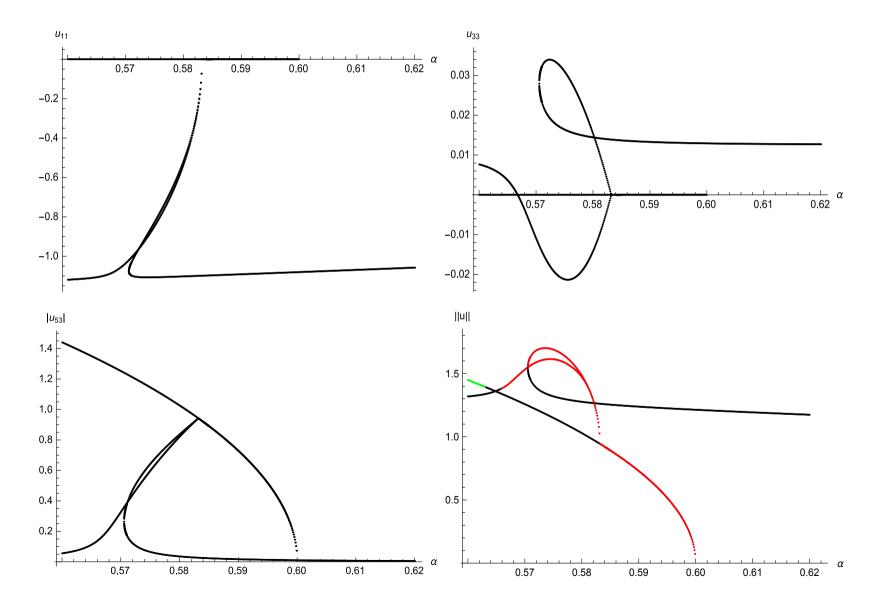
The (1,1) branch for the nonlinear wave equation $\alpha^2 u_{tt} - u_{xx} = u^3$ truncated at N = K = 3, 5, 7, 9, 19, 39.

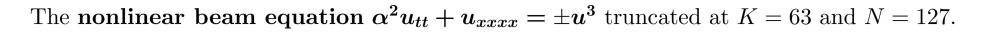


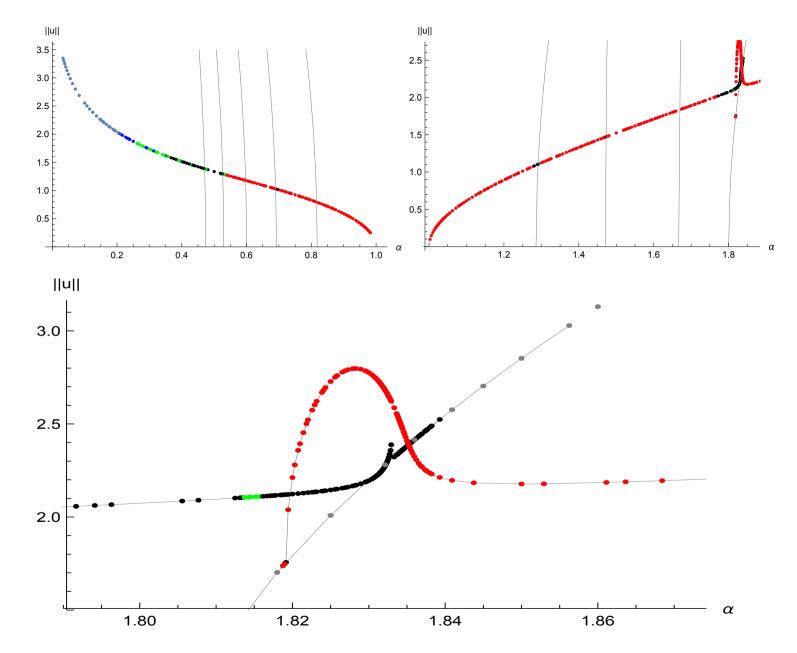
The (1,1) branch for the truncated nonlinear wave equation $\alpha^2 u_{tt} - u_{xx} = u^3$ and some other (a, b) branches (thin lines).



The nonlinear wave equation, truncated at $N \gg K = 7$. The (1,1) branch undergoes a <u>fold</u> bifurcation at $\alpha \simeq 0.571$ and a <u>pitchfork</u> bifurcation involving the (5,3) branch at $\alpha \simeq 0.585$.







4.1 - Proofs

The proofs of Theorems 1,2,3 use the contraction mapping theorem.

Given $\rho = (\rho_1, \rho_2)$ with $\rho_j > 0$ denote by \mathcal{A}_{ρ}^{o} the closure of ... with respect to the norm

$$||u||_{\rho} = \sum_{n,k} |u_{n,k}| \varrho_1^n \varrho_2^k, \qquad \varrho_j = 1 + \rho_j.$$

Let $\mathcal{B}_{\rho} = \mathcal{B} \cap \mathcal{A}_{\rho}^{o}$. Consider a quasi-Newton map associated with \mathcal{F}_{α} ,

$$\mathcal{N}_lpha(h) = \mathcal{F}_lpha(u_0 + Ah) - u_0 + (\mathrm{I} - A)h\,,$$

where u_0 is an approximate fixed point and A an approximate inverse of $I - D\mathcal{F}_{\alpha}(u_0)$. Denote by B_{δ} the open ball of radius δ in \mathcal{B}_{ρ} , centered at the origin.

Theorem 3 is proved by verifying the following bounds.

Lemma 4 For each $r \in Q_2$ there exists a set $R \subset \mathbb{R}$ of positive measure that includes r as a Lebesgue density point, a pair ρ of positive real numbers, a Fourier polynomial $u_0 \in \mathcal{B}_{\rho}$, a linear isomorphism $A : \mathcal{B}_{\rho} \to \mathcal{B}_{\rho}$, and positive constants K, δ , ε satisfying $\varepsilon + K\delta < \delta$, such that for every $\alpha \in R$ the map \mathcal{N}_{α} defined as above is analytic on B_{δ} and satisfies

 $\|\mathcal{N}_{\alpha}(0)\|_{\rho} < \varepsilon, \qquad \|D\mathcal{N}_{\alpha}(h)\|_{\rho} < K, \quad h \in B_{\delta}.$

4.2 - Proofs

 $\text{Compactness of } \ L_{\alpha}^{-1}: \mathcal{B}_{\rho} \to \mathcal{B}_{\rho}.$

Define $|[s]| = \operatorname{dist}(s, \mathbb{Z})$. A simple estimate on the eigenvalues of L_{α} is

$$\beta^2 |\lambda_{n,k}| = (\beta k^{\mu} + n) |\beta k^{\mu} - n| \ge \left(2(\beta k^{\mu} \vee n) - \left\| \beta k^{\mu} \right\| \right) \left\| \beta k^{\mu} \right\|, \qquad \beta = \alpha^{-1}.$$

If $\alpha = p/q$ with p odd and q even: $\|\beta k^{\mu}\| \ge 1/p$ for k odd; so in this case L_{α}^{-1} is compact.

For $\mu = 2$ and irrational α we can use the following. Let $(\psi_1, \psi_2, \psi_3, \ldots)$ be a summable sequence of nonnegative real numbers.

Proposition 5. Let $m \ge 1$. Consider an interval J_m of length $m^{-2} \le |J_m| \le 1$. Then

 $\left\{\beta \in J_m : \left\|\beta k^2\right\| \ge \psi_k \text{ for all } k \ge m\right\}$

has measure at least $(1 - 4\Psi_m)|J_m|$, where $\Psi_m = \sum_{k \ge m} \psi_k$.

Applying this with $|J_m| = 1$ and $\psi_k = k^{-3/2}$ yields the

Corollary 6. For almost every $\alpha \in \mathbb{R}$ the operator $L_{\alpha} = \alpha^2 \partial_t^2 + \partial_x^4$ has a compact inverse.

4.3 - Proofs

Subspaces for error terms: $u \in \mathcal{B}_{\rho,\nu,\kappa}$ iff $u \in \mathcal{B}_{\rho}$ and $u_{n,k} = 0$ whenever $n < \nu$ or $k < \kappa$. Our enclosures for $u \in \mathcal{B}_{\rho}$ consist of interval enclosures for each $c_{n,k}$ and for the norm of each $E_{\nu,\kappa}$ in a representation

$$u = \sum_{\substack{n \le N \\ k \le K}} c_{n,k} P_{n,k} + \sum_{\substack{\nu \le 2N \\ \kappa \le 2K}} E_{\nu,\kappa}, \qquad E_{\nu,\kappa} \in \mathcal{B}_{\rho,\nu,\kappa}.$$

Estimating the map $u \mapsto u^3$ on \mathcal{B}_{ρ} is "standard". The operator norm of $L_{\alpha}^{-1} : \mathcal{B}_{\rho,\nu,\kappa} \to \mathcal{B}_{\rho,\nu,\kappa}$ is bounded by $\beta^2/\phi(\nu,\kappa)$ where

$$\phi(
u,\kappa) = \inf_{n\geq
u top k\geq \kappa} eta^2 |\lambda_{n,k}| = \inf_{n\geq
u top k\geq \kappa} \left(eta k^\mu + n
ight) |eta k^\mu - n|\,, \qquad eta = lpha^{-1}\,.$$

Here ν, κ, n, k are odd positive integers. To prove Lemma 4 we use

Lemma 7. Let r = p/q with p odd and q even. Given odd positive integers κ and ν , there exists a set $R \subset \mathbb{R}$ of positive measure that includes r as a Lebesgue density point, such that for all $\alpha \in R$,

$$\phi(\nu,\kappa) \ge \frac{7}{4p} \left[\left(\beta \kappa^2 \lor \nu \right) - \frac{7}{16p} \right], \qquad \beta = \alpha^{-1}.$$

Idea of the proof: In the above **inf** distinguish between $k \ge m$ and k < m. For $k \ge m$ use Proposition 5 with J_m centered at r. And for k < m use that α is close to r. Do this for increasingly large m.

Some references

- P.H. Rabinowitz, Free vibration for a semilinear wave equation, Comm. Pure Appl. Math.. **31**, 31–68 (1978).
- P.H. Rabinowitz, On nontrivial solutions of a semilinear wave equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8, 647–657 (1981).
- M. Berti, Nonlinear Oscillations of Hamiltonian PDEs, Birkhäuser Verlag, 2007.
- W.M. Schmidt, Metrical theorems on fractional parts of sequences, Trans. Amer. Math. Soc. **110**, 493–518 (1964).
- L.H. Éliasson, B. Grébert, S. Kuksin, KAM for the non-linear beam equation, 2 Preprints.
- G. Gentile, V. Mastropietro, M. Procesi, Periodic solutions for completely resonant nonlinear wave equations with Dirichlet boundary conditions, Commun. Math. Phys. **256**, 437–490 (2005).
- V. Mastropietro, M. Procesi, Lindstedt series for periodic solutions of beam equations with quadratic and velocity dependent nonlinearities, Commun. Pure Appl. Anal. 5, 1, 128 (2006).
- G. Gentile, M. Procesi, Periodic solutions for a class of nonlinear partial differential equations in higher dimension, Commun. Math. Phys. **289**, 863–906 (2009).
- C. Lee, Periodic solutions of beam equations with symmetry, Nonlin. Anal. T.M.A. 42, 631–650 (2000)
- J.Q. Liu, Free vibrations for an asymmetric beam equation, Nonlin. Anal. T.M.A. **51**, 487–497 (2002)
- J.Q. Liu, Free vibrations for an asymmetric beam equation, II, Nonlin. Anal. T.M.A. 56, 415–432 (2004)
- G. Arioli, F. Gazzola, On a nonlinear nonlocal hyperbolic system modeling suspension bridges, Milan J. Math. 83, 211–236 (2015).
- G. Arioli, F. Gazzola, Torsional instability in suspension bridges: the Tacoma Narrows Bridge case, Preprint mp_arc 15-83.
- G. Arioli, H. Koch, Non-symmetric low-index solutions for a symmetric boundary value problem, J. Differ. Equations, **252** 448–458 (2012).
- G. Arioli, H. Koch, Some symmetric boundary value problems and non-symmetric solutions, J. Differ. Equations **259**, 796–816 (2015).
- G. Arioli, H. Koch, Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto-Sivashinski Equation, Arch. Rat. Mech. Anal. **197**, 1033–1051 (2010).
- G. Arioli, H. Koch, Integration of Dissipative Partial Differential Equations: A Case Study, SIAM J. Appl. Dyn. Syst. 9 1119–1133 (2010).