Families of periodic solutions for some Hamiltonian PDEs
(with G. Arioli)
(1) The problem etc.
(2) Main results
(3) Numerical results
(4) Proofs

We consider time-periodic solutions for the nonlinear wave equation $(\mu=1)$ and the nonlinear beam equation ($\mu=2$)

$$
\partial_{t}^{2} \mathfrak{u}(t, x)+(-1)^{\mu} \partial_{x}^{2 \mu} \mathfrak{u}(t, x)=f(\mathfrak{u}(t, x)), \quad(t, x) \in \mathbb{R} \times(0, \pi),
$$

with Dirichlet BCs. These PDEs are Hamiltonian with

$$
H(\mathfrak{u}, \mathfrak{v})=\int_{0}^{\pi}\left[\frac{1}{2}\left(\partial_{x}^{\mu} \mathfrak{u}\right)^{2}+\frac{1}{2} \mathfrak{v}^{2}-F(\mathfrak{u})\right] d x, \quad F^{\prime}=f
$$

From a period 2π one can get "related" periods via scaling. Changes f unless homogeneous.
Our motivation:

- Observed instabilities in a bridge model [Arioli, Gazzola 2000].
- CAP for Hamiltonian and/or parabolic PDEs with potential small denominator issues.

Existing relayed work:
Variational methods for period 2π and related:
$\mu=1$ [Rabinowitz 1978; Rabinowitz 1981; ...]
$\mu=2$ [Lee 2000; Liu 2002; Liu 2004; ...]
Perturbative methods for small \mathfrak{u} and positive-measure sets of periods near "special" values:
$\mu=1$ [Berti 2007; Gentile, Mastropietro, Procesi 2005; Gentile, Procesi 2009]
$\mu=2$ [Mastropietro, Procesi 2006; Gentile, Procesi 2009]

We restrict to $f(\mathfrak{u})=\sigma \mathfrak{u}^{3}$ with $\sigma= \pm 1$.
Setting $\mathfrak{u}(t, x)=u(\alpha t, x)$, where $\frac{2 \pi}{\alpha}$ is the desired period for \mathfrak{u}, we arrive at the equation

$$
L_{\alpha} u=\sigma u^{3}, \quad L_{\alpha}=\alpha^{2} \partial_{t}^{2}+(-1)^{\mu} \partial_{x}^{2 \mu}
$$

where $u=u(t, x)$ is 2π-periodic in t and satisfies Dirichlet boundary conditions at $x=0, \pi$.
$\mu=1$: Nonlinear wave equation $\alpha^{2} \partial_{t}^{2} u-\partial_{x}^{2} u=\sigma u^{3}$.
$\mu=2$: Nonlinear beam equation $\alpha^{2} \partial_{t}^{2} u+\partial_{x}^{4} u=\sigma u^{3}$.
Consider the vector space \mathcal{A}° of all real analytic functions

$$
u=\sum_{n, k} u_{n, k} P_{n, k}, \quad P_{n, k}(t, x)=\cos (n t) \sin (k x)
$$

We restrict our analysis to the subspace \mathcal{B} consisting of all $u \in \mathcal{A}^{\circ}$ with the property that $u_{n, k} \neq 0$ only if \underline{n} and k are both odd.
Notice that

$$
L_{\alpha} P_{n, k}=\lambda_{n, k} P_{n, k}, \quad \lambda_{n, k}=k^{2 \mu}-(\alpha n)^{2}=\left(k^{\mu}+\alpha n\right)\left(k^{\mu}-\alpha n\right) .
$$

We only consider α values for which $\lambda_{n, k} \neq 0$ for all odd n and k.
This includes the set \mathbb{Q}_{o} of rationals $\alpha=p / q$ with p and q of opposite parity.

Definition. A solution $u \in \mathcal{B}$ of the equation $L_{\alpha} u=\sigma u^{3}$ will be called a type $(1,1)$ solution if $\left|u_{n, k}\right|<\left|u_{1,1}\right|$ whenever $n>1$ or $k>1$.

First consider the nonlinear wave equation for some rational values of α. Our sample set:

$$
Q_{1}=\left\{\frac{3}{8}, \frac{5}{12}, \frac{7}{16}, \frac{9}{20}, \frac{13}{28}, \frac{1}{2}, \frac{15}{28}, \frac{11}{20}, \frac{9}{16}, \frac{7}{12}, \frac{5}{8}, \frac{9}{14}, \frac{11}{16}, \frac{7}{10}, \frac{13}{18}, \frac{3}{4}, \frac{11}{14}, \frac{5}{6}, \frac{7}{8}, \frac{9}{10}, \frac{11}{12}, \frac{13}{14}, \frac{17}{18}\right\} .
$$

Theorem 1. For each $\alpha \in Q_{1}$ the equation $\alpha^{2} \partial_{t}^{2} u-\partial_{x}^{2} u=u^{3}$ has a solution $u \in \mathcal{B}$ of type $(1,1)$ with $\left|u_{1,1}\right|>\sqrt{2(1-\alpha)}$.

Remark. Every solution $u \in \mathcal{B}$ of the equation $\alpha^{2} \partial_{t}^{2} u-\partial_{x}^{2} u=u^{3}$ with $\alpha \in \mathbb{Q}_{\text {o }}$ yields a solution $\tilde{u} \in \mathcal{B}$ of the equation $\alpha^{2} \partial_{t}^{2} \tilde{u}-\partial_{x}^{2} \tilde{u}=-\tilde{u}^{3}$, and vice-versa. The functions u and \tilde{u} are related via $\tilde{u}(t, x)=\alpha^{-1} u(x-\pi / 2, t-\pi / 2)$.

Next we consider irrational values of α.
Unfortunately we have to switch to the nonlinear beam equation.
Still difficult to construct non-small solutions for specific α.
Best known: $\alpha=1 / \sqrt{c}$ where c is an integer that is not the square of an integer.
By Siegel's theorem on integral points on algebraic curves of genus one,

$$
c \lambda_{n, k}=c k^{4}-n^{2} \rightarrow \infty \quad \text { as } \quad n \vee k \rightarrow \infty
$$

Unfortunately we have no useful bounds ...

So we make an assumption:
Theorem 2. Let $\alpha=1 / \sqrt{3}$. Assume that $\left|3 k^{4}-n^{2}\right| \geq 39$ for all $k \geq 9$ and all $n \in \mathbb{N}$. Then the equation $\alpha^{2} \partial_{t}^{2} u+\partial_{x}^{4} u=u^{3}$ has a solution $u \in \mathcal{B}$ of type $(1,1)$ with $\left|u_{1,1}\right|>1$.

We have verified the assumption $\min _{n}\left|3 k^{4}-n^{2}\right| \geq 39$ for $9 \leq k \leq 10^{12}$.
Our third result concerns irrational values of α that are close to the rationals in

$$
Q_{2}=\left\{\frac{1}{4}, \frac{3}{10}, \frac{9}{20}, \frac{1}{2}, \frac{7}{12}, \frac{5}{8}, \frac{3}{4}, \frac{5}{6}, \frac{7}{6}, \frac{5}{4}, \frac{19}{14}, \frac{17}{12}, \frac{31}{20}, \frac{13}{8}, \frac{31}{18}, \frac{61}{34}\right\} .
$$

Theorem 3. For each $r \in Q_{2}$ there exists a set $R \subset \mathbb{R}$ of positive measure that includes r as a Lebesgue density point, such that for each $\alpha \in R$, the equation $\alpha^{2} \partial_{t}^{2} u+\partial_{x}^{4} u=\sigma u^{3}$ with $\sigma=\operatorname{sign}(1-\alpha)$ has a solution $u \in \mathcal{B}$ of type $(1,1)$ with $\left|u_{1,1}\right|>\sqrt{2|1-\alpha|}$.

Remark. In all of the equations considered, other types of solutions can be obtained via scaling: If $u \in \mathcal{A}^{\circ}$ satisfies the equation $L_{\alpha} u=\sigma u^{3}$, and if we define

$$
\begin{equation*}
\tilde{u}(t, x)=b^{\mu} u(a t, b x), \quad \tilde{\alpha}=\alpha b^{\mu} / a \tag{*}
\end{equation*}
$$

with b and a nonzero integers, then \tilde{u} belongs to \mathcal{A}° and satisfies $L_{\tilde{\alpha}} \tilde{u}=\sigma \tilde{u}^{3}$.

In our proofs we solve $L_{\alpha} u=\sigma u^{3}$ via the fixed point equation

$$
u=\mathcal{F}_{\alpha}(u) \stackrel{\text { def }}{=} L_{\alpha}^{-1} \sigma u^{3}, \quad \sigma=\operatorname{sign}(1-\alpha)
$$

For numerical experiments we use Fourier polynomials

$$
u=\sum_{\substack{n \leq N \\ k \leq K}} u_{n, k} P_{n, k}, \quad P_{n, k}(t, x)=\cos (n t) \sin (k x)
$$

and truncate $\boldsymbol{u}^{\mathbf{3}}$ to wavenumbers $n \leq N$ and $k \leq K$.
As $N \rightarrow \infty$ the equation becomes Hamiltonian, even if $K<\infty$.
Definition for the $K<\infty$ equation. The union of all smooth branches that include a solution of type $(1,1)$ will be referred to as the $(1,1)$ branch . Scaling each solution on the $(1,1)$ branch via () yields what we will call the (a, b) branch.

In the following graphs we show the norm

$$
\|u\|_{0}=\sum_{n, k}\left|u_{n, k}\right|
$$

of the numerical solution u as a function of α.
Colors encode the $\underline{\text { index of } u}$: the number of eigenvalues larger than 1 of $D \mathcal{F}_{\alpha}(u)$.

The $(1,1)$ branch for the nonlinear wave equation $\alpha^{2} u_{t t}-u_{x x}=u^{3}$ truncated at $N=K=3,5,7,9,19,39$.

The $(1,1)$ branch for the truncated nonlinear wave equation $\alpha^{2} u_{t t}-u_{x x}=u^{3}$ and some other $(\boldsymbol{a}, \boldsymbol{b})$ branches (thin lines).

The nonlinear wave equation, truncated at $N \gg K=7$.
The $(1,1)$ branch undergoes a fold bifurcation at $\alpha \simeq 0.571$
and a pitchfork bifurcation involving the $(5,3)$ branch at $\alpha \simeq 0.585$.

The nonlinear beam equation $\boldsymbol{\alpha}^{2} \boldsymbol{u}_{\boldsymbol{t} \boldsymbol{t}}+\boldsymbol{u}_{\boldsymbol{x} \boldsymbol{x} \boldsymbol{x} \boldsymbol{x}}= \pm \boldsymbol{u}^{\mathbf{3}}$ truncated at $K=63$ and $N=127$.

The proofs of Theorems $1,2,3$ use the contraction mapping theorem.
Given $\rho=\left(\rho_{1}, \rho_{2}\right)$ with $\rho_{j}>0$ denote by $\mathcal{A}_{\rho}^{\text {o }}$ the closure of \ldots with respect to the norm

$$
\|u\|_{\rho}=\sum_{n, k}\left|u_{n, k}\right| \varrho_{1}^{n} \varrho_{2}^{k}, \quad \varrho_{j}=1+\rho_{j}
$$

Let $\mathcal{B}_{\rho}=\mathcal{B} \cap \mathcal{A}_{\rho}^{\mathrm{o}}$. Consider a quasi-Newton map associated with \mathcal{F}_{α},

$$
\mathcal{N}_{\alpha}(h)=\mathcal{F}_{\alpha}\left(u_{0}+A h\right)-u_{0}+(\mathbf{I}-A) h
$$

where u_{0} is an approximate fixed point and A an approximate inverse of $\mathrm{I}-D \mathcal{F}_{\alpha}\left(u_{0}\right)$.
Denote by B_{δ} the open ball of radius δ in \mathcal{B}_{ρ}, centered at the origin.
Theorem 3 is proved by verifying the following bounds.
Lemma 4 For each $r \in Q_{2}$ there exists a set $R \subset \mathbb{R}$ of positive measure that includes r as a Lebesgue density point, a pair ρ of positive real numbers, a Fourier polynomial $u_{0} \in \mathcal{B}_{\rho}$, a linear isomorphism $A: \mathcal{B}_{\rho} \rightarrow \mathcal{B}_{\rho}$, and positive constants K, δ, ε satisfying $\varepsilon+K \delta<\delta$, such that for every $\alpha \in R$ the map \mathcal{N}_{α} defined as above is analytic on B_{δ} and satisfies

$$
\left\|\mathcal{N}_{\alpha}(0)\right\|_{\rho}<\varepsilon, \quad\left\|D \mathcal{N}_{\alpha}(h)\right\|_{\rho}<K, \quad h \in B_{\delta}
$$

Compactness of $L_{\alpha}^{-1}: \mathcal{B}_{\rho} \rightarrow \mathcal{B}_{\rho}$.
Define $\|s\|=\operatorname{dist}(s, \mathbb{Z})$. A simple estimate on the eigenvalues of L_{α} is

$$
\beta^{2}\left|\lambda_{n, k}\right|=\left(\beta k^{\mu}+n\right)\left|\beta k^{\mu}-n\right| \geq\left(2\left(\beta k^{\mu} \vee n\right)-\left|\left\lceil\beta k^{\mu} \|\right)\right| \mid \beta k^{\mu}\right\rfloor \mid, \quad \beta=\alpha^{-1}
$$

If $\alpha=p / q$ with p odd and q even: $\left\|\beta k^{\mu}\right\| \geq 1 / p$ for k odd; so in this case L_{α}^{-1} is compact.
For $\mu=2$ and irrational α we can use the following.
Let $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots\right)$ be a summable sequence of nonnegative real numbers.
Proposition 5. Let $m \geq 1$. Consider an interval J_{m} of length $m^{-2} \leq\left|J_{m}\right| \leq 1$. Then

$$
\left\{\beta \in J_{m}:\left\|\beta k^{2}\right\| \geq \psi_{k} \quad \text { for all } \quad k \geq m\right\}
$$

has measure at least $\left(1-4 \Psi_{m}\right)\left|J_{m}\right|$, where $\Psi_{m}=\sum_{k \geq m} \psi_{k}$.
Applying this with $\left|J_{m}\right|=1$ and $\psi_{k}=k^{-3 / 2}$ yields the
Corollary 6. For almost every $\alpha \in \mathbb{R}$ the operator $L_{\alpha}=\alpha^{2} \partial_{t}^{2}+\partial_{x}^{4}$ has a compact inverse.

Subspaces for error terms: $u \in \mathcal{B}_{\rho, \nu, \kappa}$ iff $u \in \mathcal{B}_{\rho}$ and $u_{n, k}=0$ whenever $n<\nu$ or $k<\kappa$.
Our enclosures for $u \in \mathcal{B}_{\rho}$ consist of interval enclosures
for each $c_{n, k}$ and for the norm of each $E_{\nu, \kappa}$ in a representation

$$
u=\sum_{\substack{n \leq N \\ k \leq K}} c_{n, k} P_{n, k}+\sum_{\substack{\nu \leq 2 N \\ \kappa \leq 2 K}} E_{\nu, \kappa}, \quad E_{\nu, \kappa} \in \mathcal{B}_{\rho, \nu, \kappa} .
$$

Estimating the map $u \mapsto u^{3}$ on \mathcal{B}_{ρ} is "standard".
The operator norm of $L_{\alpha}^{-1}: \mathcal{B}_{\rho, \nu, \kappa} \rightarrow \mathcal{B}_{\rho, \nu, \kappa}$ is bounded by $\boldsymbol{\beta}^{\mathbf{2}} / \boldsymbol{\phi}(\boldsymbol{\nu}, \boldsymbol{\kappa})$ where

$$
\phi(\nu, \kappa)=\inf _{\substack{n \geq \nu \\ k \geq \kappa}} \beta^{2}\left|\lambda_{n, k}\right|=\inf _{\substack{n \geq \nu \\ k \geq \kappa}}\left(\beta k^{\mu}+n\right)\left|\beta k^{\mu}-n\right|, \quad \beta=\alpha^{-1} .
$$

Here ν, κ, n, k are odd positive integers. To prove Lemma 4 we use
Lemma 7. Let $r=p / q$ with p odd and q even. Given odd positive integers κ and ν, there exists a set $R \subset \mathbb{R}$ of positive measure that includes r as a Lebesgue density point, such that for all $\alpha \in R$,

$$
\phi(\nu, \kappa) \geq \frac{7}{4 p}\left[\left(\beta \kappa^{2} \vee \nu\right)-\frac{7}{16 p}\right], \quad \beta=\alpha^{-1}
$$

Idea of the proof: In the above inf distinguish between $k \geq m$ and $k<m$.
For $k \geq m$ use Proposition 5 with J_{m} centered at r. And for $k<m$ use that α is close to r.
Do this for increasingly large m.

Some references

- P.H. Rabinowitz, Free vibration for a semilinear wave equation, Comm. Pure Appl. Math.. 31, 31-68 (1978).
- P.H. Rabinowitz, On nontrivial solutions of a semilinear wave equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8, 647-657 (1981).
- M. Berti, Nonlinear Oscillations of Hamiltonian PDEs, Birkhäuser Verlag, 2007.
- W.M. Schmidt, Metrical theorems on fractional parts of sequences, Trans. Amer. Math. Soc. 110, 493-518 (1964).
- L.H. Eliasson, B. Grébert, S. Kuksin, KAM for the non-linear beam equation, 2 Preprints.
- G. Gentile, V. Mastropietro, M. Procesi, Periodic solutions for completely resonant nonlinear wave equations with Dirichlet boundary conditions, Commun. Math. Phys. 256, 437-490 (2005).
- V. Mastropietro, M. Procesi, Lindstedt series for periodic solutions of beam equations with quadratic and velocity dependent nonlinearities, Commun. Pure Appl. Anal. 5, 1, 128 (2006).
- G. Gentile, M. Procesi, Periodic solutions for a class of nonlinear partial differential equations in higher dimension, Commun. Math. Phys. 289, 863-906 (2009).
- C. Lee, Periodic solutions of beam equations with symmetry, Nonlin. Anal. T.M.A. 42, 631-650 (2000)
- J.Q. Liu, Free vibrations for an asymmetric beam equation, Nonlin. Anal. T.M.A. 51, 487-497 (2002)
- J.Q. Liu, Free vibrations for an asymmetric beam equation, II, Nonlin. Anal. T.M.A. 56, 415-432 (2004)
- G. Arioli, F. Gazzola, On a nonlinear nonlocal hyperbolic system modeling suspension bridges, Milan J. Math. 83, 211-236 (2015).
- G. Arioli, F. Gazzola, Torsional instability in suspension bridges: the Tacoma Narrows Bridge case, Preprint mp_arc 15-83.
- G. Arioli, H. Koch, Non-symmetric low-index solutions for a symmetric boundary value problem, J. Differ. Equations, 252 448-458 (2012).
- G. Arioli, H. Koch, Some symmetric boundary value problems and non-symmetric solutions, J. Differ. Equations 259, 796-816 (2015).
- G. Arioli, H. Koch, Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto-Sivashinski Equation, Arch. Rat. Mech. Anal. 197, 1033-1051 (2010).
- G. Arioli, H. Koch, Integration of Dissipative Partial Differential Equations: A Case Study, SIAM J. Appl. Dyn. Syst. 9 1119-1133 (2010).

