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We consider time-periodic solutions for the
nonlinear wave equation (µ = 1) and the nonlinear beam equation (µ = 2)

∂2
t u(t, x) + (−1)µ∂2µ

x u(t, x) = f(u(t, x)) , (t, x) ∈ R× (0, π) ,

with Dirichlet BCs. These PDEs are Hamiltonian with

H(u, v) =

∫ π

0

[

1
2(∂

µ
xu)

2 + 1
2v

2 − F (u)
]

dx , F ′ = f .

From a period 2π one can get “related” periods via scaling. Changes f unless homogeneous.

Our motivation:
• Observed instabilities in a bridge model [ Arioli, Gazzola 2000 ].
• CAP for Hamiltonian and/or parabolic PDEs with potential small denominator issues.

Existing relayed work:

Variational methods for period 2π and related:
µ = 1 [ Rabinowitz 1978; Rabinowitz 1981; . . . ]
µ = 2 [ Lee 2000; Liu 2002; Liu 2004; . . . ]

Perturbative methods for small u and positive-measure sets of periods near “special” values:
µ = 1 [ Berti 2007; Gentile, Mastropietro, Procesi 2005; Gentile, Procesi 2009 ]
µ = 2 [ Mastropietro, Procesi 2006; Gentile, Procesi 2009 ]
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We restrict to f(u) = σu3 with σ = ±1.
Setting u(t, x) = u(αt, x), where 2π

α is the desired period for u, we arrive at the equation

Lαu = σu3 , Lα = α2∂2
t + (−1)µ∂2µ

x ,

where u = u(t, x) is 2π-periodic in t and satisfies Dirichlet boundary conditions at x = 0, π.

µ = 1: Nonlinear wave equation α2∂2t u− ∂2xu = σu3 .

µ = 2: Nonlinear beam equation α2∂2t u+ ∂4xu = σu3 .

Consider the vector space Ao of all real analytic functions

u =
∑

n,k

un,kPn,k , Pn,k(t, x) = cos(nt) sin(kx) .

We restrict our analysis to the subspace B consisting of all u ∈ Ao with the property that
un,k 6= 0 only if n and k are both odd.
Notice that

LαPn,k = λn,kPn,k , λn,k = k2µ − (αn)2 = (kµ + αn)(kµ − αn) .

We only consider α values for which λn,k 6= 0 for all odd n and k.

This includes the set Qo of rationals α = p/q with p and q of opposite parity.
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Definition. A solution u ∈ B of the equation Lαu = σu3 will be called a type (1, 1) solution

if |un,k| < |u1,1| whenever n > 1 or k > 1.

First consider the nonlinear wave equation for some rational values of α. Our sample set:

Q1 =
{

3

8
, 5

12
, 7

16
, 9

20
, 13
28
, 1
2
, 15
28
, 11
20
, 9

16
, 7

12
, 5
8
, 9

14
, 11
16
, 7

10
, 13
18
, 3
4
, 11
14
, 5
6
, 7
8
, 9

10
, 11
12
, 13
14
, 17
18

}

.

Theorem 1. For each α ∈ Q1 the equation α2∂2t u − ∂2xu = u3 has a solution u ∈ B of type
(1, 1) with |u1,1| >

√

2(1− α).

Remark. Every solution u ∈ B of the equation α2∂2t u−∂2xu = u3 with α ∈ Qo yields a solution
ũ ∈ B of the equation α2∂2t ũ− ∂2xũ = −ũ3, and vice-versa. The functions u and ũ are related
via ũ(t, x) = α−1u(x− π/2, t− π/2).

Next we consider irrational values of α.

Unfortunately we have to switch to the nonlinear beam equation.
Still difficult to construct non-small solutions for specific α.

Best known: α = 1/
√
c where c is an integer that is not the square of an integer.

By Siegel’s theorem on integral points on algebraic curves of genus one,

cλn,k = ck4 − n2 → ∞ as n ∨ k → ∞ .

Unfortunately we have no useful bounds . . .
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So we make an assumption:

Theorem 2. Let α = 1/
√
3. Assume that |3k4 − n2| ≥ 39 for all k ≥ 9 and all n ∈ N. Then

the equation α2∂2t u+ ∂4xu = u3 has a solution u ∈ B of type (1, 1) with |u1,1| > 1.

We have verified the assumption minn |3k4 − n2| ≥ 39 for 9 ≤ k ≤ 1012.

Our third result concerns irrational values of α that are close to the rationals in

Q2 =
{

1

4
, 3

10
, 9

20
, 1

2
, 7

12
, 5

8
, 3

4
, 5

6
, 7

6
, 5

4
, 19

14
, 17

12
, 31

20
, 13

8
, 31

18
, 61

34

}

.

Theorem 3. For each r ∈ Q2 there exists a set R ⊂ R of positive measure that includes r
as a Lebesgue density point, such that for each α ∈ R, the equation α2∂2t u + ∂4xu = σu3 with

σ = sign(1− α) has a solution u ∈ B of type (1, 1) with |u1,1| >
√

2|1− α|.

Remark. In all of the equations considered, other types of solutions can be obtained via scaling:
If u ∈ Ao satisfies the equation Lαu = σu3, and if we define

ũ(t, x) = bµu(at, bx) , α̃ = αbµ/a , (✡)

with b and a nonzero integers, then ũ belongs to Ao and satisfies Lα̃ũ = σũ3.
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In our proofs we solve Lαu = σu3 via the fixed point equation

u = Fα(u)
def
= L−1

α σu3 , σ = sign(1−α) .

For numerical experiments we use Fourier polynomials

u =
∑

n≤N
k≤K

un,kPn,k , Pn,k(t, x) = cos(nt) sin(kx) .

and truncate u3 to wavenumbers n ≤ N and k ≤ K.
As N → ∞ the equation becomes Hamiltonian, even if K <∞.

Definition for the K <∞ equation. The union of all smooth branches that include a solution

of type (1, 1) will be referred to as the (1, 1) branch . Scaling each solution on the (1, 1) branch
via (✡) yields what we will call the (a, b) branch .

In the following graphs we show the norm

‖u‖0 =
∑

n,k

|un,k|

of the numerical solution u as a function of α.

C o l o r s encode the index of u: the number of eigenvalues larger than 1 of DFα(u).
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The (1,1) branch for the nonlinear wave equation α2utt − uxx = u3

truncated at N = K = 3, 5, 7, 9, 19, 39.



3.3 – Numerical results 8

The (1,1) branch for the truncated nonlinear wave equation α2utt − uxx = u3

and some other (a, b) branches (thin lines).
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The nonlinear wave equation, truncated at N ≫ K = 7.
The (1, 1) branch undergoes a fold bifurcation at α ≃ 0.571
and a pitchfork bifurcation involving the (5, 3) branch at α ≃ 0.585.
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The nonlinear beam equation α2utt + uxxxx = ±u3 truncated at K = 63 and N = 127.
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The proofs of Theorems 1,2,3 use the contraction mapping theorem.

Given ρ = (ρ1, ρ2) with ρj > 0 denote by Ao

ρ the closure of . . . with respect to the norm

‖u‖ρ =
∑

n,k

|un,k|̺n1̺k2 , ̺j = 1 + ρj .

Let Bρ = B ∩ Ao

ρ. Consider a quasi-Newton map associated with Fα,

Nα(h) = Fα(u0 +Ah)− u0 + (I−A)h ,

where u0 is an approximate fixed point and A an approximate inverse of I−DFα(u0).
Denote by Bδ the open ball of radius δ in Bρ, centered at the origin.

Theorem 3 is proved by verifying the following bounds.

Lemma 4 For each r ∈ Q2 there exists a set R ⊂ R of positive measure that includes r as

a Lebesgue density point, a pair ρ of positive real numbers, a Fourier polynomial u0 ∈ Bρ, a

linear isomorphism A : Bρ → Bρ, and positive constants K, δ, ε satisfying ε +Kδ < δ, such
that for every α ∈ R the map Nα defined as above is analytic on Bδ and satisfies

‖Nα(0)‖ρ < ε , ‖DNα(h)‖ρ < K , h ∈ Bδ .
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Compactness of L−1
α : Bρ → Bρ.

Define |⌈s⌋| = dist(s,Z). A simple estimate on the eigenvalues of Lα is

β2|λn,k| = (βkµ + n)|βkµ − n| ≥
(

2(βkµ ∨ n)− |⌈βkµ⌋|
)

|⌈βkµ⌋| , β = α−1 .

If α = p/q with p odd and q even: |⌈βkµ⌋| ≥ 1/p for k odd; so in this case L−1

α is compact.

For µ = 2 and irrational α we can use the following.
Let (ψ1, ψ2, ψ3, . . .) be a summable sequence of nonnegative real numbers.

Proposition 5. Let m ≥ 1. Consider an interval Jm of length m−2 ≤ |Jm| ≤ 1. Then

{

β ∈ Jm :
∣

∣

⌈

βk2
⌋
∣

∣ ≥ ψk for all k ≥ m
}

has measure at least (1− 4Ψm)|Jm|, where Ψm =
∑

k≥m ψk.

Applying this with |Jm| = 1 and ψk = k−3/2 yields the

Corollary 6. For almost every α ∈ R the operator Lα = α2∂2t + ∂4x has a compact inverse.
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Subspaces for error terms: u ∈ Bρ,ν,κ iff u ∈ Bρ and un,k = 0 whenever n < ν or k < κ.

Our enclosures for u ∈ Bρ consist of interval enclosures
for each cn,k and for the norm of each Eν,κ in a representation

u =
∑

n≤N

k≤K

cn,kPn,k +
∑

ν≤2N
κ≤2K

Eν,κ , Eν,κ ∈ Bρ,ν,κ .

Estimating the map u 7→ u3 on Bρ is “standard”.

The operator norm of L−1

α : Bρ,ν,κ → Bρ,ν,κ is bounded by β2/φ(ν, κ) where

φ(ν, κ) = inf
n≥ν
k≥κ

β2|λn,k| = inf
n≥ν
k≥κ

(βkµ + n)|βkµ − n| , β = α−1 .

Here ν, κ, n, k are odd positive integers. To prove Lemma 4 we use

Lemma 7. Let r = p/q with p odd and q even. Given odd positive integers κ and ν, there
exists a set R ⊂ R of positive measure that includes r as a Lebesgue density point, such that

for all α ∈ R,

φ(ν, κ) ≥ 7

4p

[

(

βκ2 ∨ ν
)

− 7

16p

]

, β = α−1 .

Idea of the proof: In the above inf distinguish between k ≥ m and k < m.
For k ≥ m use Proposition 5 with Jm centered at r. And for k < m use that α is close to r.
Do this for increasingly large m.
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